Effects of hypoxic exercise on PGC-1α in skeletal muscle of rats with alimentary obesity and its downstream factors

WU Ju-hua¹, YANG Ya-nan², WENG Xi-quan³, XU Guo-qin², LIN Wen-tao¹
(¹Laboratory of Biochemistry, Shanghai University of Sport, Shanghai 200438, China; ²Key Laboratory of Biochemistry of Guangzhou Sport University, Guangzhou 510500, China)

Abstract: In order to probe into the effects of hypoxic exercise on PGC-1α in skeletal muscle of rats with alimentary obesity and its downstream factors, the authors built a model of SD rats with alimentary obesity induced by...
7-week high-fat diet, then divided the rats randomly into a normoxic high-fat diet quit group (NHQ), a normoxic high-fat diet exercise group (NHE), a 16.3% hypoxic high-fat diet quit group (HGQ1), a 16.3% hypoxic high-fat diet exercise group (HGE1), a 13.3% hypoxic high-fat diet quit group (HGQ2), and a 13.3% hypoxic high-fat diet exercise group (HGE2), each of which consisted of 10 rats, continued to feed the rats with high-fat food, let them undergo 8-week endurance training, i.e. 20m/min, 40min/d, 5d/week, killed and sampled the rats 24h after the last exercise, measured 4 blood lipid indexes and blood glucose (BG) by means of test kit, measured PGC-1α and its downstream factors CPT-1, MCAD and PPARγ by means of qRT-PCR technology, and revealed the following findings: 1) 7-week high-fat diet could induced the increase or significant increase of the weight, BMI, as well as BG, CHO, LDL-L and TG contents of the rats \((P<0.01 \text{ or } P<0.05) \); 2) as compared with the rats in groups NHQ and HGQ1, the rats in groups HGE1, HGE2 and NHE had a decreased or significantly decreased weight \((P<0.01 \text{ or } P<0.05) \); as compared with the rats in group NHE, the rats in groups HGE1 and HGE2 had a decreased weight \((P<0.05) \); 3) as compared with the rats in group NHQ, the rats in group NHE had a significantly increased MCAD mRNA expression \((P<0.01) \); the rats in group HGE1 had increased or significantly increased PGC-1α, MCAD and PPARγ mRNA expressions \((P<0.01 \text{ or } P<0.05) \); the rats in group HGQ2 had a significantly increased PGC-1α mRNA expression \((P<0.01) \); the rats in group HGE2 had increased or significantly increased PGC-1α, MCAD, CPT-1 and PPARγ mRNA expressions \((P<0.01 \text{ or } P<0.05) \); as compared with the rats in group NHQ, the rats in groups NGQ, HGQ1 and HGQ2 had a decreased or significantly decreased MCAD mRNA expression \((P<0.01 \text{ or } P<0.05) \); as compared with the rats in group HGQ1, the rats in groups HGE1 and HGQ2 had an increased PGC-1α mRNA expression \((P<0.01 \text{ or } P<0.05) \); as compared with the rats in group HGQ1, the rats in groups HGE1 and HGQ2 had increased or significantly increased PGC-1α and MCAD expressions \((P<0.01 \text{ or } P<0.05) \); the rats in group HGE2 had significantly increased PGC-1α, MCAD and CPT-1 mRNA expressions \((P<0.01) \); the rats in group NHE had increased or significantly increased MCAD and PPARγ mRNA expressions \((P<0.01 \text{ or } P<0.05) \). The said findings indicate the followings: 1) long-term high-fat diet can induce the occurrence of alimentary obesity; 2) hypoxia and/or endurance exercise can effectively control the weight of rats with alimentary obesity, increase PGC-1α in skeletal muscle and its downstream factors, while endurance exercise under a 13.3% hypoxic condition can achieve a better result.

Key words: sports biochemistry; hypoxic exercise; alimentary obesity; skeletal muscle; PGC-1α; rats

生活水平提高和饮食习惯改变，营养性肥胖比例逐渐升高，而肥胖伴随机体代谢紊乱，胰岛素抵抗等不良病证，已逐渐成为威胁人类健康的重要因素之一。骨骼肌作为机体重要运动器官，是能量代谢重要场所，其代谢稳态是维持骨骼肌健康乃至整个机体健康的基本前提与重要保证。当骨骼肌中脂肪供给与氧化代谢不均衡时，脂肪代谢异常往往会导致骨骼肌中脂代谢紊乱，发生胰岛素抵抗现象。路琼丽等\(^\text{15}\)揭示低氧运动对肥胖大鼠骨骼肌脂肪酸氧化相关基因表达的良性影响。氧化物酶增殖物受体γ (PPAR-γ)介导的基因转录参与脂肪细胞分化、糖脂代谢等生理调控过程，而 PGC-1α 作为其转录激活因子，可辅助激活 PPAR-γ 的基因表达，骨骼肌糖脂代谢中发挥作用\(^\text{16}\)。目前，在常氧状态下，耐力运动对高脂膳食大鼠骨骼肌中 PGC-1α 促进脂肪酸氧化作用已有所证实\(^\text{17}\)。然而，低氧或高盐耐力运动是否影响高脂膳食大鼠骨骼肌中 PGC-1α 及其下游因子的表达，目前尚未见报道。本实验通过高脂膳食诱导长期大鼠营养性肥胖模型并对其进行不同浓度低氧及运动干预，探讨不同低氧浓度及运动对大鼠骨骼肌中 PGC-1α 及其下游因子在其脂肪酸氧化过程的影响，旨在为代谢性疾病的低氧运动防治提供理论参考和实验依据。

1 材料与方法

1.1 营养性肥胖大鼠建模及低氧运动干预分组

1) 营养性肥胖大鼠建模。
清洁级健康雄性 SD 大鼠 (SCXK(粤)2011-0015) 100 只，由南方医科大学实验动物中心提供，体重 170-220 g。动物分笼饲养，5 只/笼，自然光照节律，自由摄食、饮水，温度 22-24 ℃，湿度 40%-55%，普通膳食为国家标准啮齿类动物饲料 (南方医科大学动物实验中心提供)。高脂血症：蔗糖 20%、猪油 15%、胆固醇 1.2%、胆酸钠 0.2%、酪蛋白 10%、磷酸氢钙 0.6%、石粉 0.4%。预混料 0.4%。基础饲料 52.2% (为质量分数)。广东医科大学实验动物中心提供 SCXK(粤)2013-0002，高脂膳食方案为：蛋白质 17.5%，脂肪 37%，碳水化合物 45.5% (质量分数)。大鼠随机分组为普通膳食组 (CON, 20 只) 和高脂膳食组 (DIO, 80 只)。根据肥胖易感模型筛选规律，高脂膳食组大鼠的体重超过普通膳食组大鼠体重的 20% 即可作为营养性肥胖大鼠。持续性饲养 7 周后，从 CON 组和 DIO 组分别随机挑选 10 只和 18 只，随机取血，测其血糖、血脂、结合大鼠体重、BMI，进而评价造模效果。

2. 低氧运动干预分组

营养性肥胖大鼠模型建立成功后的 60 只大鼠分为 6 组：1) 常规高脂膳食静息组 (NHO)、常规高脂膳食运动组 (NHE)、16.3% 低氧高脂膳食静息组 (HQC1)、16.3% 低氧高脂膳食运动组 (HEG1)、13.3% 低氧高脂膳食静息组 (HQC2)、13.3% 低氧高脂膳食运动组 (HEG2)。各组每只持续干预 8 周，均进行高脂膳食饲养，运动组则进行 8 周跑台耐力训练，适应性 1 周后，均以 20 m/min、40 min/d、5 d/周，跑台坡度为 0%，进行耐力运动。末次训练 24 h 后处死大鼠，大鼠主动脉取血，3000 r/min 离心 15 min，取血清；另取一侧腹主动脉取液氮速冻，均于－80 ℃超低温冰箱长期保存，待测。

1.2 血脂、血糖测定

半自动生化仪测定血脂四项 (南京建成公司试剂盒)：总胆固醇 (COD-PAP 法)、高密度脂蛋白 (磷钨酸镁沉淀法)、低密度脂蛋白 (聚乙烯硫酸沉淀法)、甘油三酯 (GPO-PAP 法)。京都血糖仪测定血糖含量 (京都血糖试纸)。

1.3 实时荧光定量 PCR 检测 PGC-1α 及其下游基因表达

Trizol 法提取骨骼肌组织总 RNA。取 1 μg 总 RNA 用 TaKaRa 公司的 PrimeScript TM 逆转录试剂盒进行逆转录反应获得 cDNA。使用 SYBR Green I 荧光染料，实时荧光定量 PCR (ABI 7500 型荧光定量 PCR 仪)，美国) 测定 PGC-1α、CPT-1、MCAD、PPARγ mRNA 表达量。扩增条件为：预变性每 10 min 95 ℃；每 30 s 95 ℃，60 ℃ 退火 1 min(PGC-1α、MCAD、PPARγ 和 GAPDH)、CPT-1 58 ℃ 退火 1 min，共 40 个循环。以 GAPDH 作为内参，计算目的基因的相对表达量 (对照组的倍数)。利用 Primer 5 软件设计引物，由上海生工生物公司合成的引物列表见表 1。

<table>
<thead>
<tr>
<th>基因</th>
<th>引物序列 (5’→3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGC-1α</td>
<td>F: CACAACCGGGACAGAATCTGA</td>
</tr>
<tr>
<td></td>
<td>R: CCGAGAATACGGTGCATT</td>
</tr>
<tr>
<td>CPT-1</td>
<td>F: CGGTTCAGAAGTGCACTATC</td>
</tr>
<tr>
<td></td>
<td>R: TACACCCACACCCAGAT</td>
</tr>
<tr>
<td>MCAD</td>
<td>F: CAAGAGGACCTGGGAACCTTG</td>
</tr>
<tr>
<td></td>
<td>R: CCCCCAAAGATGTCCTCAA</td>
</tr>
<tr>
<td>PPARγ</td>
<td>F: TCCGAAAGACATCCGATGCAA</td>
</tr>
<tr>
<td></td>
<td>R: GACAGGCAACCTGGAAACCGACA</td>
</tr>
<tr>
<td>GAPDH</td>
<td>F: TGGTGACCTCATGGCCTAC</td>
</tr>
<tr>
<td></td>
<td>R: CAGCAACTGAGGCGCCTCTC</td>
</tr>
</tbody>
</table>

1.4 数据统计

各检测数据录入 Excel 2007 结果，结果用平均数 ± 标准差 (x ± s)，GraphPad Prism 5 进行数理统计及图像生成，SPSS17.0 软件进行多因素方差分析，两组之间进行独立样本 t 检验，以 P<0.05 为差异显著性水平，P<0.01 为差异非常显著性水平。

2 实验结果及分析

2.1 高脂膳食诱导营养性肥胖大鼠模型建立

7 周高脂膳食饲养后，DIO 组大鼠较 CON 组体重、体长、BMI 均非常显著性增加 (P<0.01，见表 2)。

<table>
<thead>
<tr>
<th>组别</th>
<th>n/只</th>
<th>体重/g</th>
<th>体长/cm</th>
<th>BMI/(kg · m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td>10</td>
<td>366.340±31.126</td>
<td>22.980±1.142</td>
<td>6.942±0.404</td>
</tr>
<tr>
<td>DIO</td>
<td>18</td>
<td>505.252±33.391</td>
<td>25.180±1.207</td>
<td>8.002±0.716</td>
</tr>
</tbody>
</table>

1) 与 CON 相比，P<0.01

与 CON 组相比，DIO 组大鼠血脂 (Blood Glucose，以下简称 BG)、总胆固醇 (Total Cholesterol，TC)、低密度脂蛋白 (Low Density Lipoprotein Cholesterol，LDL-c) 均非常显著性增加 (P<0.01)，甘油三酯 (triglyceride，TG) 显著性增加 (P<0.05) (见表 3)，而高密度脂蛋白 (High Density Lipoprotein Cholesterol，HDL-c) 无显著变化，仅略有降低。7 周内两周大鼠摄食量并未有显著性差异 (见表 4)。
表 3 两组大鼠血脂及血糖浓度（X ± s）比较 mmol/L

<table>
<thead>
<tr>
<th>组别</th>
<th>n/例</th>
<th>BG</th>
<th>TC</th>
<th>TG</th>
<th>HDL-c</th>
<th>LDL-c</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td>10</td>
<td>2.96±0.360</td>
<td>1.28±0.308</td>
<td>0.608±0.175</td>
<td>0.538±0.141</td>
<td>0.371±0.174</td>
</tr>
<tr>
<td>DIO</td>
<td>18</td>
<td>4.57±0.834</td>
<td>2.09±0.349</td>
<td>0.936±0.220</td>
<td>0.428±0.175</td>
<td>0.528±0.107</td>
</tr>
</tbody>
</table>

1)与 CON 组相比，P<0.05；2)与 CON 组相比，P<0.01

表 4 建模期两组大鼠摄食量（X ± s）比较 g

<table>
<thead>
<tr>
<th>时间</th>
<th>CON 组</th>
<th>DIO 组</th>
</tr>
</thead>
<tbody>
<tr>
<td>第 1 周</td>
<td>24.67±2.929</td>
<td>23.98±3.046</td>
</tr>
<tr>
<td>第 2 周</td>
<td>26.00±1.089</td>
<td>23.99±2.141</td>
</tr>
<tr>
<td>第 3 周</td>
<td>29.42±0.920</td>
<td>25.36±1.878</td>
</tr>
<tr>
<td>第 4 周</td>
<td>30</td>
<td>27.03±2.638</td>
</tr>
<tr>
<td>第 5 周</td>
<td>32.14±1.380</td>
<td>29.05±2.167</td>
</tr>
<tr>
<td>第 6 周</td>
<td>30.62±0.805</td>
<td>28.12±3.036</td>
</tr>
<tr>
<td>第 7 周</td>
<td>32.76±9.142</td>
<td>29.30±3.937</td>
</tr>
</tbody>
</table>

1)建模期两组大鼠摄食量无显著性差异

综上，7 周高脂肪饮食饲养后，DIO 组大鼠形态学变化表现为体重质量、BMI、体长显著高于 CON 组，且体质量增长超过 CON 组大鼠 20%；血液生化指标表现为 BG、TC、LDL-c 含量非常显著性增加；两组大鼠摄食量无显著性差异，提示高脂膳食诱导的营养性肥胖大鼠模型建立成功。

2.2 低氧运动干预对营养性肥胖大鼠体脂的影响

与 NHQ 组和 HGQ1 组相比，营养性肥胖大鼠在低氧运动干预下，HGE1 组和 HGQ2 组大鼠体脂含量非常显著性下降（P<0.01），NHE 组体脂含量显著性下降（P<0.05）；与 HNE 组相比，HGE1 组和 HGQ2 组大鼠体脂含量显著下降（P<0.05）。从第 2 周开始，低氧结合运动对大鼠体脂质量控制显著优于常氧运动组大鼠（P<0.05)(见表 5)。

表 5 干预 8 周各组大鼠体脂（X ± s）比较 g

<table>
<thead>
<tr>
<th>组别</th>
<th>开始时</th>
<th>第 1 周</th>
<th>第 2 周</th>
<th>第 3 周</th>
<th>第 4 周</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHQ</td>
<td>520.0±45.34</td>
<td>538.95±52.50</td>
<td>560.52±55.59</td>
<td>579.23±63.57</td>
<td>592.90±65.41</td>
</tr>
<tr>
<td>HGQ1</td>
<td>519.34±37.23</td>
<td>532.78±41.37</td>
<td>551.28±42.15</td>
<td>572.86±44.99</td>
<td>587.96±48.65</td>
</tr>
<tr>
<td>HGQ2</td>
<td>518.21±33.97</td>
<td>529.09±37.18</td>
<td>540.68±38.71</td>
<td>560.99±42.58</td>
<td>568.39±43.03</td>
</tr>
<tr>
<td>HGE1</td>
<td>498.80±34.81</td>
<td>472.62±39.78</td>
<td>474.03±39.72</td>
<td>477.08±41.75</td>
<td>475.40±36.93</td>
</tr>
<tr>
<td>HGE2</td>
<td>490.86±19.96</td>
<td>478.97±12.85</td>
<td>476.03±16.65</td>
<td>481.11±20.35</td>
<td>470.09±19.61</td>
</tr>
</tbody>
</table>

与 NHQ 组相比，1)P<0.05；2)P<0.01；与 HGE1 组相比，3)P<0.05；与 HGQ1 组相比，4)P<0.05；5)P=0.01

2.3 低氧运动干预对营养性肥胖大鼠骨骼肌组织中 PGC-1α 及其下游因子基因表达的影响

1)与 NHQ 组相比，HGE1 组、HGQ2 组和 HGE2 组大鼠 PGC-1α mRNA 表达上调非常显著（P<0.01）；NHE 组和 HGQ2 组大鼠 MCAD mRNA 表达上调非常显著（P<0.01），HGE1 组大鼠 MCAD mRNA 表达显著性增加（P<0.05）；HGE2 组大鼠 CPT-1 mRNA 表达上调非常显著（P<0.01）；HGE1 组和 HGE2 大鼠 PPAR γ mRNA 表达显著性增加（P<0.05）。

2)与 HNE 组相比，HGE1 组、HGQ2 组大鼠 PGC-1α mRNA 表达显著性增加（P<0.05），HGE2 组大鼠 PGC-1α mRNA 表达上调非常显著（P<0.01）；NHQ 组和 HGQ1 组大鼠 MCAD mRNA 表达下降非常显著（P<0.01），HGQ2 组大鼠 MCAD mRNA 表达显著性下降（P<0.05），HGE2 组大鼠 MCAD mRNA 表达上调非常显著（P<0.01）；HGE2 组大鼠 CPT-1 mRNA 表达上调非常显著（P<0.01）；HGE2 大鼠 PPAR γ mRNA 表达显著性增加（P<0.05）。
3)与 HGQ1 组相比, HGE1 组、HGQ2 组和 HGE2
组大鼠 PGIC1 α mRNA 表达上调非常显著 (P<0.01); NHE 组和 HGE2 组大鼠 MCAD mRNA 表达表达上调非常显著 (P<0.01); HGE1 组和 HGQ2 组大鼠 MCAD mRNA 表达显著增加(P<0.05); HGE2 组大鼠 CPT-I mRNA 表达表达上调非常显著 (P<0.01); HGQ2 组 和 HGE2 大鼠 PAR γ mRNA 表达表达上调非常显著 (P<0.01), NHE 组 和 HGE1 组 PAR γ mRNA 表达显著增加(P<0.05)。

3 讨论

3.1 高脂膳食诱导营养性肥胖大鼠模型

肥胖危害人类健康，可引起高血脂症、糖尿病、脂肪肝、动脉粥样硬化等相关疾病，其脂肪代谢紊乱是这些疾病发生的主要原因之一[12]。然而引起机体肥胖的因素存在多方面因素，如遗传、环境、饮食和遗传等。为探究不同时期脂肪摄入量和(或)运动对能量过剩诱导的肥胖性肥胖大鼠骨骼肌细胞 PGIC1 α 及其下游基因的影响，本实验进行高脂肪膳食饲养以诱导营养性肥胖大鼠，随之进行低氧(和)运动干预。由于实验动物自身存在“肥胖抵抗”与“肥胖易感”，且与人类肥胖标准评定不同，对于大鼠肥胖评定而言，目前尚未有统一标准，目前有 3 种标准可用于评定大鼠是否肥胖，包括：(1)高脂组织质量超过正常组质量 1.96 个标准差。(2)高脂组织质量超过正常组质量 1.94 个标准差。(3)脂肪组织质量超过正常组质量 20%(4)以 BMI 值是否与正常组大鼠具有显著性差异进行判定[13]。本研究结果显示，经 7 周高脂肪膳食饲养后，80%DIO 组大鼠体脂和糖分化超过 CON 组 20%，两组间 BMI 具有显著性差异，血糖血脂均显著升高，并与文献报道一致，提示肥胖性肥胖大鼠敏感。[13]

3.2 低氧运动对营养性肥胖大鼠身体形态学影响

与以往的研究结果一致，8 周不同程度分低氧运动可用于有效降低肥胖大鼠体质量，且 13.3%低氧(和)运动的干预效果较低氧和 16.3%低氧运动而言更加明显，这可能是由于低氧下单纯运动只能消耗掉同样高脂肪饲料的过剩能量，而低氧运动往往抑制大食欲欲，摄食量减少，同时由于 O2 供应不足，机体能量消耗增加，而一定 O2 供应量下，O2 供应量越低，对大鼠的摄食量及机体耗氧量影响越显著，因而较低氧(和)运动而言，低氧(和)运动可有效降低肥胖大鼠体质量，且体积分数 13.3%低氧效果更加显著。

3.3 低氧运动对营养性肥胖大鼠骨骼肌细胞 PGIC1 α 及其下游因子的影响

1998 年，美国哈佛大学 Puigserver 教授[14]首次发现 PGIC1 α，其在线粒体中起关键调控作用。随后，关于 PGIC1 α 生物学功能的研究随之越来越多。PGIC1 α 可调控肌肉纤维转化、糖脂代谢、白色脂肪棕色化等生理过程[15]。由于骨骼肌在机体整体代谢中具有重要意义，骨骼肌线粒体数目，呼吸链活性、脂肪酸氧化和等与机体新陈代谢密切相关。而 PGIC1 α 在调节骨骼肌线粒体发生、脂肪酸氧化等过程中起重要作用[16]。研究发现，PGIC1 α 基因敲除后，小鼠的脂肪酸氧化基因表达下调，因此，提高骨骼肌中 PGIC1 α 有益于机体代谢稳态。在骨骼肌中，调控脂肪酸合成或氧化代谢的关键酶有肉毒碱棕榈酰转移酶 1(CPT-1)、中链酰基辅酶 A 脱氢酶(MCAD)。这两种分子是调控长链脂肪酸进入线粒体的关键酶，在脂肪酸氧化中起着重要作用。PGIC1 α 可以调控脂 CPT-1 及 MCAD[17]。此外，Zhang Y 等[18]研究发现 PGIC1 α 通过激活 PPAR γ，进而促进 FXR(farnesoid X 受体)基因转录，最终促进脂肪代谢。这些研究表明 PGIC1 α 及其下游基因在骨骼肌脂肪酸氧化代谢中起着积极作用。

已知常氧耐力运动可调控骨骼肌的脂肪酸氧化代谢，常氧运动可通过多条信号传导通路促进骨骼肌中 PGIC1 α 基因表达[19,20]。Akimoto 等[21]通过耐力运动干预抑制胰岛素抵抗小鼠 p38MAPK 信号通路，进而激活 PGIC1 α 基因启动子活性。此外，常氧下，耐力运动也能诱导骨骼肌中 CPT-1、MCAD、PPAR γ 的表达增加[22]。然而，关于常氧下，耐力运动同时影响 PGIC1 α、CPT-1、MCAD、PPAR γ 的研究，目前鲜有报道。本研究所显示常氧下，耐力运动干预于小鼠骨骼肌中 PGIC1 α mRNA、CPT-1mRNA、MCADmRNA、PPAR γ mRNA 表达均有所上调，与 Carnevali 等[23]研究结果一致，然而本研究中 CPT-1mRNA 则略有上调，与以往研究[24]相反，关于常氧下耐力运动与 CPT-1mRNA 的作用影响可能仍需进一步探讨。本实验研究中除了进行常氧耐力运动干预外，还进行了不同体积分高低氧和低氧运动干预。低氧和低氧运动可有效控制大鼠质量，在以往的研究[25,26]和我们的研究中已被证实。Bigard 等[27]也发现低氧和低氧运动可增加骨骼肌脂肪氧化，然而，低氧和低氧运动影响骨骼肌中脂肪酸氧化相关分子(PGIC1 α、CPT-1、MCAD、PPAR γ)表达的研究相对较少了。本研究结果显示不同体积分高低氧和低氧运动干预 PGIC1 α mRNA 的表达，而 13.3%低氧干预效果优于 16.3%低氧干预，与 Gutsaeva 等[28]研究结果一致；低氧干预分高低氧，PGIC1 α 表达上调，然而，低氧和低氧运动影响 PGIC1 α 的研究主要集中于 PGIC1 α 线粒体发生方面[29]，而低氧和低氧运动对 PGIC1 α 调控脂肪酸氧化方面的研究甚少，其机制尚需深入研究。Galbes 等[30]和路瑛等[31]研究中发现低氧
暴露会降低CPT-1表达，低氧运动会上调CPT-1表达，而我们的研究结果与之相反。低氧和低氧运动影响MCAD的研究目前较少见，我们的研究结果发现不同体积分低氧运动均可上调MCAD表达，而16.3%低氧暴露却使MCAD表达下调，与之前相比，13.3%低氧暴露使MCAD表达上调。推测一定低氧体积分数下，低氧暴露影响MCAD的表达可能具有两相性。刘晓玲等（2011）利用CoCl₂诱导低氧环境，发现细胞中PPARγ2表达随之上调，而本实验研究结果提示低氧暴露下16.3%低氧暴露使PPARγ表达下调，13.3%低氧暴露则使PPARγ表达上调。表明低氧暴露对PPARγ的影响可能也具有两相性，而不同低氧运动则均上调PPARγmRNA的表达。目前低氧和低氧运动对PPARγ调控方面的研究较少，仍需进一步研究。

综上，高脂肪膳食诱导的营养性肥胖大鼠骨骼肌细胞中PGC-1α及其下游因子的表达经氧耐力运动、低氧和低氧运动干预后，均发生不同程度上调或下降，提示耐氧运动、低氧或低氧运动在骨骼肌脂肪氧化代谢中均起重要作用。然而，有趣的是，不同时间上低氧运动均引起PGC-1α及其下游因子表达上调，而不同体积分低氧暴露则可能引起表达下调，这可能是由于低氧体积分数对机体信号的调控存在一定程度，具有两相性，在不同范围内所产生的作用效果可能截然不同。

长期高脂肪膳食可诱导营养性肥胖发生，导致机体代谢紊乱。低氧（或耐力运动）有效控制营养性肥胖大鼠体重质量，低氧（或耐力运动）可上调骨骼肌PGC-1α及其下游基因，进而改善骨骼肌脂肪代谢，其中13.3%低氧体积分数下耐力运动效果较佳。

参考文献：
[1] 钱伟，梁允正，孙玉等。下一个将是？—关键信号分子对运动性骨骼肌能量代谢的调控[J]。体育科学，2015，35(7)：83-89。
[10] 汤锦花，严海等。营养性肥胖大鼠模型的建立与评价[J]。同济大学学报(医学版)，2010，31(1)：32-34。
[13] 孙志，张中成，刘志敏。营养性肥胖动物模型的实验研究[J]。中国药理学通报，2002，18(4)：466-467。
[16] PUGSERVER P，WU Z，PARK C W，et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis[J]。Cell，1998，92(6)：829-839。
[18] SCHNYDER S，HANDSCHIN C. Skeletal muscle...
as an endocrine organ; PGC-1α, myokines and exercise[J]. Bone, 2015, 80: 115-125.